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Université Pantheon Sorbonne - France

Abstract. The present manuscript tackles the issue of variable selection
for clustering, in high dimensional data described both by numerical and
categorical features. First, we build upon the sparse k-means algorithm
with lasso penalty, and introduce the group-L1 penalty – already known
in regression – in the unsupervised context. Second, we preprocess mixed
data and transform categorical features into groups of dummy variables
with appropriate scaling, on which one may then apply the group-sparse
clustering procedure. The proposed method performs simultaneously clus-
tering and feature selection, and provides meaningful partitions and mean-
ingful features, numerical and categorical, for describing them.

1 Introduction

Whereas the issue of feature selection through regularization procedures received
a great deal of attention in the supervised learning context and resulted in an
abundant literature over the last twenty years, it is only much later and relatively
recently that it effectively emerged in the unsupervised framework. The first
approaches were model-based, these being naturally suited for including lasso
(L1) and related penalties, and one may cite [1] for a L1-penalized EM procedure
(the mixture consists of Gaussian distributions with equal variances) or [2] for a
detailed review on model-based clustering for high-dimensional data. In the more
general framework where no assumption is made on the underlying distribution,
a sparse k-means algorithm with L1 penalty was introduced in [3], and later on
extended to feature selection within each cluster and reinforced by consistency
results, [4] [5] [6]. Let us also mention that a generalization of the sparse k-means
algorithm to overlapping groups of variables was recently introduced in [7] .

That being said, all methods cited above are essentially designed for numer-
ical data, while real data is often made of numerical and categorical features.
Some of the authors above touch upon the question of categorical features, by
mentioning the possibility of making them numerical using a transformation
through dummy variables. However, this processing step is not that immediate,
since the Euclidean distance on zero-one vectors is not particularly suited for
being mixed with Euclidean distances on numerical variables. Other authors



implicitly suggest that the proposed algorithms may be written in terms of dis-
tances or dissimilarities between input data only, and hence it suffices to use an
appropriate distance for categorical features. Nevertheless, the distance-based
approaches may rapidly translate into an increased complexity if the size of the
data becomes large.

The present manuscript aims at proposing an explicit method for variable
selection in a mixed-data framework, using a penalized criterion. Our contri-
bution is two folded: first, we introduce a group-sparse version of the k-means
algorithm, which allows one to select among priorly defined groups of numeri-
cal variables; second, we use the preprocessing proposed in [8] for mixed data
and write each categorical feature as a group of properly scaled numerical fea-
tures, on which we apply the group-sparse k-means. Eventually, starting from a
data set described by both numerical and categorical features, we simultaneously
perform k-means clustering and feature selection on both types of features.

2 Method and data preprocessing

We start by introducing the group-sparse k-means algorithm, followed by the
particular writing of the problem in the case of mixed data.

For the moment, let us suppose that the data X consists of n input vectors
valued in Rp, and that Xj ∈ Rn represents the j-th feature (all features are scaled
to zero mean and unit variance). Furthermore, the data may be partitioned into
K clusters, with nk the number and Ck the set of indices of the observations
in the k-th cluster. Then, one may define Xj,k = 1

nk

∑
i∈Ck

Xi,j the average of

feature j in cluster k, and Xj = 1
n

∑n
i=1Xi,j the average of the jth feature over

the entire data set.
Since the k-means algorithm aims at finding the partition C1, ..., CK maxi-

mizing the between-class variance, let us write this as:

B(X, C1, ..., CK) =

K∑
k=1

nk
n

p∑
j=1

(Xj,k −Xj)
2 =

p∑
j=1

B(Xj , C1, ..., CK) , (1)

where B(Xj , C1, ..., CK) is the between-class variance associated to the j-th fea-
ture. In the following, in order to simplify the notations, we shall use bj =
B(Xj , C1, ..., CK), j = 1, ..., p.

If one suspects that features do not equally contribute to the clustering,
some being more informative than others, she may address this by introducing
a weighted version of the between-class variance, penalized by a regularization
term:

B(X, C1, ..., CK ,w) =

p∑
j=1

wjbj − λh(w) = wTb− λh(w) , (2)

where wT = (w1, ..., wp), w ≥ 0, ‖w‖2 ≤ 1 is the vector of weights, and
bT = (b1, ..., bp) are the feature-wise between-class variances, for a given parti-
tion C1, ..., CK , and λ is a hyper parameter. In the following, K the number of



clusters as well as λ are supposed to be priorly fixed. In the sparse clustering
algorithm introduced in [3], the regularization term is chosen by analogy with
the lasso framework, hence h(w) = ‖w‖1. This leads to a sparse representation
of the variables, with the weights wj directly translating the contribution of the
associated features to the clustering.

2.1 Group sparse k-means

We generalize the original sparse clustering by introducing a group regulariza-
tion framework. Suppose that the p features are furthermore divided into L

priorly known groups, such that X =
[
X1|...|XL

]
, with X` ∈ Rn×p` , p` being

the size of group `, and p1 + ... + pL = p. The between-class variance vec-
tor b and the weight vector w can be also decomposed as bT = (b1, ...,bL)
and wT = (w1, ...,wL), where b` = (bp0+...+p`−1+1, ..., bp0+...+p`)

T and w` =
(wp0+...+p`−1+1, ..., wp0+...+p`)

T , with the notation p0 = 0.
For group data, let us define a specific L1-group penalty, which has been

already used in the regression framework [9],

h(w) = ‖w‖1,group =

L∑
`=1

α`‖w`‖2 , (3)

where (α`)` is a vector of weights applied to the groups of variables. In the
literature on group-sparse regression, two common choices appear to emerge,
either α` = 1, ∀` = 1, ..., L, or α` =

√
p` ∀` = 1, ..., L. The latter is penalizing

each group by its size, and we shall use it in the following.
With the previous notations, the optimization problem writes as follows:{

maxw,C1,...,CK
wTb− λ

∑L
`=1

√
p`‖w`‖2 ,

‖w‖2 ≤ 1 , w ≥ 0
(4)

For a fixed number of clusters K and for a fixed hyper parameter λ, the
problem in Equation 4 is solved using an iterative algorithm. After having
set an initial value for the weight vector w (generally one uses weights with
equal norms for the L groups), one is alternating the two following steps until
convergence:

1. Keeping w fixed, find C1, ..., CK maximizing wTb, which is actually equiv-
alent to performing a usual k-means training on the scaled features X̃j =

√
wjXj ,

j = 1, ..., p.
2. Keeping C1, ..., CK fixed, find w ≥ 0 maximizing B(X, C1, ..., CK ,w) and

such that ‖w‖2 ≤ 1. The solution may be analytically obtained using Lagrange
multipliers and the KKT conditions, and may be expressed in terms of group
soft-thresholding operators:

w? =


b
‖b‖2 if λ = 0,

0 if λ > 0 and ‖S̃G(b,
√
pλ)‖2 = 0,

S̃G(b,
√
pλ)

‖S̃G(b,
√
pλ)‖2

if λ > 0 and ‖S̃G(b,
√
pλ)‖2 6= 0,

(5)



where

S̃G(b,
√
pλ)T =

(
SG(b1,

√
p1λ)T , ..., SG(bL,

√
pLλ)T

)
∈ Rp, (6)

√
pT = (

√
p1, ...,

√
pL), and SG(b`,

√
p`λ) = b`

‖b`‖2

(
‖b`‖2 −

√
p`λ
)
+
∈ Rp` , ` =

1, ..., L, is the group soft-thresholding operator.
The group soft-thresholding operator will take out from the model all groups

which have a norm of the corresponding between-class variance b` smaller than
the fixed threshold λ normalized by the size of the group, and shrink by the
same amount the norms of the remaining groups of variables.

The hyper parameter λ may be tuned using various criteria for assessing the
quality of the model, such as the gap statistic as described in [3], the ratio of
explained variance, etc. Usually, one considers a fine grained grid valued between
zero and some upper bound chosen as the maximum ‖b`‖2 when training a simple
k-means procedure. Choosing the optimal λ and the optimal number of clusters
K is not trivial, but, because of the reduced number of pages, we do not discuss
here the different criteria in the literature, nor how they fit in the group-sparse
framework.

2.2 Sparse clustering for mixed data

Eventually, let us discuss the case where the data is summarized by both nu-
merical and categorical features. If one has n input data X described by d1
categorical features and d2 numerical ones, such that each of the categorical
features has pj possible values, j = 1, ..., d1, she may transform each categorical

feature Xj into pj dummy variables X̃j = (X̃1
j , ..., X̃

pj
j ) ∈ {0, 1}n×pj and thus

define a natural group structure on the transformed data Y = [Y1|...|Yd1+d2 ],
where Y` = X̃` for ` = 1, ..., d1, Y` = X` for ` = d1 + 1, ..., d1 + d2, with
respective group sizes pT = (p1, ..., pd1 , 1, ..., 1) ∈ Rd1+d2 .

When training group-sparse k means on the group structure above, this
amounts to performing variable selection in a mixed-data context. Before ap-
plying the algorithm described in the previous section, Y must be properly
preprocessed. This prior step is described for example in [8]: numerical vari-
ables are scaled to zero mean and unit variance, while the dummy variables are

centered and normalized by 1/
√

n
nl,j

, where nl,j is the number of input data

taking the j-th value of the lth feature, or equivalently the sum over X̃j
` . The

scaling applied to the dummy variables actually leads to using a χ2 distance on
the categorical features, while the numerical features, after scaling, are compared
through the usual Euclidean distance.

3 A real-life example

For illustrating the algorithm introduced above, we use the Statlog Heart dataset
available in the UCI machine learning data repository [10]. The data consists of
270 inputs and is described by six numerical features (age, resting blood pressure



- rest.b.p, serum cholesterol in mg/dl - ser.c, maximum heart rate achieved -
max.h.r.a, ST depression induced by exercice relative to rest - oldp, number
of major vessels colored by fluoroscopy - num.m.v) and seven categorical ones
(sex, chest pain type - chest.p.t, fasting blood sugar > 120mg/dl - fast.b.s, resting
electrocardiographic results - rest.e.r, exercice induced angina - exe.i.a, the slope
of the peak exercice ST segment - slope, thalassemia -thal). One control variable
assesses the presence or the absence of a heart disease and gives an a priori
partition in two clusters. We used this knowledge to select the number of clusters
K = 2.

The hyper parameter λ was varied on a grid taking values between 0 and the
maximum between-class feature variance, extracted from a k-means algorithm
trained without weighting. The regularization paths are illustrated in Figure 1.
At the optimum value of the hyper parameter λ? (selected using a heuristic on
the ratio of explained variance), six features only are kept, four numerical, and
two categorical. The averages within cluster for the numerical features, and the
frequencies within cluster for the categorical ones, are displayed in Table 1 and
show that all selected features are significantly different in the clusters. The
method thus provides both meaningful clusters, and meaningful features - both
numerical and categorical - for describing the clusters.

Fig. 1: Feature regularization paths for the heart data. The optimum selected
λ is plotted in the vertical dotted black line. The y axis is ‖w?

`‖2, the norm of
the optimal weights associated to each feature.



Feature Cluster 1 Cluster 2 Overall statistics
Maximum heart rate (max.h.r.a) 127.1 164.2 149.7
ST depression (old) 1.85 0.53 1.05
Slope of the peak (slope) - lev. 1 15.1% 69.5% 48.1%
Slope of the peak (slope) - lev. 2 73.6% 26.8% 45.2%
Slope of the peak (slope) - lev. 3 11.3% 3.7% 6.7%
Ex. induced angina (exe.i.a) - lev. 1 41.5% 83.5% 67.0%
Ex. induced angina (exe.i.a) - lev. 2 58.5% 16.4% 33.0%
Age (age) 58.2 52.0 54.4
Number of major vessels (num.m.v) 1.03 0.43 0.67

Table 1: Overall and within clusters average values and average frequencies of
the selected features for the optimum hyper parameter λ?. Features are ordered
by the decreasing norm of their coefficients, ‖w?` ‖2. All features are significantly
different in the two clusters.

4 Conclusion and perspectives

We provide a complete procedure for simultaneously clustering mixed data, and
selecting the most relevant features for the clustering. This procedure is illus-
trated on a real dataset and proves to be efficient. Further work is currently
done on finding appropriate criteria for selecting the hyper parameter λ and the
number of clusters K. An R-package implementing this method is also currently
being developed and will be soon made available for the community.
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